

Few-shot Camouflaged Animal Detection and Segmentation

Thanh-Danh Nguyen^{1,4†}, Anh-Khoa Nguyen Vu^{1,4†}, Nhat-Duy Nguyen^{1,4†}, Vinh-Tiep Nguyen^{1,4}, Thanh Duc Ngo^{1,4}, Thanh-Toan Do⁵, Minh-Triet Tran^{2,3,4} and Tam V. Nguyen^{6*}

CV4Animals Workshop

Introduction

Overview: Camouflage is a defense mechanism that animals use to conceal their appearance by blending in with their environment. Autonomously detecting camouflaged animals is helpful in various fields of computer vision: search-and-rescue mission; wild species discovery and preservation activities; media forensics, etc.

Motivation:

- Research on camouflaged animals suffers from the lack of data
- Camouflaged instances have their texture similar to the background

Main contributions:

- 1. A novel benchmark **CAMO-FS** for few-shot detection and segmentation on camouflaged animals
- 2. A **framework** to efficiently detect and segment camouflaged instances given a small number of training data for novel classes, thanks to Instance Triplet Loss and Instance Memory Storage

CAMO-FS Benchmark Dataset

Our **CAMO-FS** benchmark contains:

- 2,852 images/ 3,342 camouflaged instances with fine-grained annotations for detection and instance segmentation (enhanced 163 images compared with CAMO++ dataset [1])
- 47 semantic classes, customized for few-shot learning with 1, 2, 3, and 5-shot

This dataset is among the firsts to address few-shot camouflaged detection and instance segmentation

Fig. 1 Exemplary camouflaged instances in CAMO-FS

General Framework

Originated from MTFA [2] model which is a two-stage training and fine-tuning mechanism, we introduce a framework for few-shot camouflaged detection and instance segmentation as below:

Fig. 3 General framework for camouflaged animal detection and instance segmentation

Mask annotation General foreground

Fig. 4 Instance Memory Storage

Instance Triplet Loss Minimizes/ maximizes the distances among foreground/background representatives

Fig. 5 Instance Triplet Loss

Contains the background and foreground

features per each class, and calculates

the discrimination between areas of

objects and no-objects in region proposals

Instance Memory Storage

Acknowledgement

This research was supported by the VNUHCM-University of Information Technology's Scientific Research Support Fund

Experimental Results

Tab. 1 Our improvement of Instance Triplet Loss and Memory Storage on MTFA model

| Method | AP | AP50 | AP75 | APs | APm | AP1 | AR1 | AR10 | ARs | ARm | AR1

Instance Segmentation												
1	Baseline	3.66	5.37	4.09	22.42	4.35	2.01	11.30	13.58	25.97	12.96	12.53
	+ Triplet	4.46	8.21	4.60	21.33	4.13	4.01	12.36	15.04	23.17	9.49	16.67
	+ Memory	5.46	9.20	6.17	27.79	6.20	4.01	17.08	19.99	29.41	11.45	20.89
2	Baseline	6.21	8.92	7.28	32.64	7.75	3.50	18.88	21.12	35.82	15.49	20.14
	+ Triplet	5.57	9.45	6.04	25.83	3.01	5.37	15.67	17.33	26.13	7.37	17.50
	+ Memory	6.95	10.72	7.60	33.62	5.73	6.44	20.00	22.15	34.25	13.86	20.92
3	Baseline	6.16	8.95	6.68	33.74	6.19	5.08	20.25	22.95	36.83	16.31	21.63
	+ Triplet	6.41	10.67	6.72	30.39	5.17	5.30	20.69	22.98	31.90	15.69	22.53
	+ Memory	7.36	11.23	8.49	37.03	6.24	5.64	24.40	27.69	38.44	17.02	26.71
5	Baseline	5.95	8.67	6.94	34.71	6.25	4.85	21.29	24.42	36.86	14.51	24.83
	+ Triplet	8.48	13.43	9.80	36.66	5.75	8.04	23.83	26.66	37.03	11.62	25.91
	+ Memory	9.61	14.61	11.73	38.60	5.79	10.40	26.65	30.37	39.21	12.26	30.02
Detection												
1	Baseline	2.93	5.86	2.20	20.95	4.18	2.03	9.25	10.84	21.74	11.49	8.77
	+ Triplet	4.04	8.65	2.98	20.50	4.90	4.22	12.89	15.53	20.73	11.45	17.46
	+ Memory	4.50	9.14	3.45	22.88	5.61	3.54	13.14	15.22	23.14	8.78	16.33
2	Baseline	5.90	8.87	6.83	33.04	9.74	3.10	17.26	19.25	34.04	15.74	19.61
	+ Triplet	7.28	11.22	8.25	32.31	10.72	6.83	20.52	22.69	32.34	14.88	23.52
	+ Memory	6.95	10.88	7.75	33.93	7.49	6.81	19.84	22.01	34.10	15.04	21.47
3	Baseline	5.84	8.98	6.29	34.56	7.78	4.31	19.13	21.83	35.80	15.93	21.09
	+ Triplet	7.49	11.51	8.23	38.45	8.61	6.38	24.88	27.52	38.55	17.66	27.44
	+ Memory	7.55	11.45	8.50	38.07	9.21	5.70	24.20	27.29	38.50	18.10	27.56
5	Baseline	5.84	9.13	6.04	35.44	8.17	4.22	19.67	22.96	35.94	14.16	22.58
	+ Triplet	9.76	14.37	11.12	40.05	8.82	9.89	25.93	29.28	40.05	12.53	30.32
	+ Memory	10.36	16.27	11.79	39.32	8.08	11.36	26.34	30.30	39.35	12.37	30.91

Fig. 6 Qualitative comparison among the baseline MTFA and our proposed methods (5-shot)

References

- [1] Le, T.-N. et al.: Camouflaged instance segmentation in-the-wild: Dataset, method, and benchmark suite. IEEE Transactions on Image Processing 31, 287-300 (2022)
- [2] Ganea, D.A. et al.: Incremental few-shot instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 1185-1194 (2021)